Translate

Monday, 30 April 2018

Some Truffle tips and Blockchain blocks

Platform: node.js/Windows
Technology: BlockChain

Smart Contracts, Smart Money and Smart Wallets - be your own bank!


The BlockChain is now a famous Go-To-Technology that has innumerable possibilities for peer-to-peer interactions for exchanges of various kind like a currency, a representation of an asset, a virtual share, a proof of work, ownership etc. 

The path to adopting a new technology or framework can be really vexing if the resources online are less.

Ironing out the vexes

One very simple problem with Truffle, on Windows ie., is caused by how Windows processes the file extensions from the command line as well as a possible buggy Ganache GUI distribution bundle. Edit: Instead of the .appx file, download from this link, which provides a fully working installer for Windows.

First, the most common problem with truffle.


On node.js, after installing truffle, the first thing that you need to do is remember to either,

1. Use truffle.cmd because, by default, the Windows command-line processor runs the truffle.js file instead of the .cmd file. Simply use truffle.cmd compile or truffle.cmd migrate or any other command when using truffle.

2. Exclude the .js extension from the PATHEXT environment variable

3. Change the .js filename to something else so that the .cmd file gets executed.

Second, git clone the ganache-cli from  https://github.com/trufflesuite/ganache.git

Once cloned, open the node.js command prompt (this is assuming that you have npm installed truffle), you can do npm install and npm start from the git clone repository folder. 


Commands after cloning ganache-cli:
  1. npm install 
  2. npm start
from the cloned repository.

If you face the Microsoft Script runtime error, make sure that ganache is added to your PATH environment variable.


The cli will start and listen in to a port configured in the truffle.js with values as below:


 networks: {
    development: {
      host: "127.0.0.1",
      port: 7545,
      network_id: "*" // Match any network id
    }
  }



What Ganache does is, it creates a virtual Ethereum based blockchain that acts as a Private net (the mainnet is the live or the production network) with some dummy accounts, which you can use for testing and development without having to use any real ethers, the gas!
A personal Ethereum Blockchain.


The mnemonic is a 12-word combination that can be used to recover a wallet if you have forgotten the details required to access your wallet. Of course, using the mnemonic combination will result in creating a new wallet.






Once your personal blockchain is created, you can download and install the 
geth and Ethereum Wallet to work with your Ethereum based blockchain apps.


What all this means is that you can act as a bank by issuing your own token that will become a cryptocurrency that you can use for interchanges between your friends, club, for betting platforms etc.


Happy creating your own bank with cryptocurrency!

Monday, 23 April 2018

A fake - Why faking a Person is a 'fake test'

Just happened to hit on the right word to express it!

While testing with TypeMock, I came across an interesting scenario where a class is declared within a controller that set off this simple post on why a fake is created and what purpose does it solve.

Let me elaborate using this example I found on the web. A controller with a class called Person inside it.

When writing a test for the controller, you will obviously need an instance of a Person because of Parameter Binding but a fake test is written just so that an external dependency does not hinder development!

This is the fundamental point in unit testing. If a unit test handles an external dependency code either through a direct, in place implementation of the external dependency or through accessing it, for real, then it is not unit testing because it violates the principle of testing code in isolation.

So, in this case, typing the Isolator.fake instance as a <Person> is a violation of the principle and therefore, is not even a 'fake test'

Below is the test for the ASP.Net MVC Controller code.

using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using MvcApplication1.Controllers;
using TypeMock.ArrangeActAssert;
namespace MvcApplication1.Tests.Controllers
{
    [TestClass]
    public class ValuesControllerTest
    {
        [TestMethod]
        public void Get()
        {
            // Arrange
            ValuesController controller = new ValuesController();

            // Act
            IEnumerable result = controller.Get();

            // Assert
            Assert.IsNotNull(result);
            Assert.AreEqual(2, result.Count());
            Assert.AreEqual("value1", result.ElementAt(0));
            Assert.AreEqual("value2", result.ElementAt(1));
        }

        [TestMethod]
        public void GetById()
        {
            // Arrange
            ValuesController controller = new ValuesController();

            // Act
            string result = controller.Get(5);

            // Assert
            Assert.AreEqual("value", result);
        }

        [TestMethod]
        public void Post()
        {
            // Arrange
            ValuesController controller = new ValuesController();
            var p = Isolate.Fake.Instance<Person>(); // Not a fake because it creates an actual instance of type Person!
            // Act
            p.Name = "Jv";
            p.Age = 12;
            var s=controller.Post("Hello ", p);

            // Assert
            Assert.AreEqual("Hello Jv:12", s);
         
        }

        [TestMethod]
        public void Put()
        {
            // Arrange
            ValuesController controller = new ValuesController();

            // Act
            controller.Put(5, "value");

            // Assert
        }

        [TestMethod]
        public void Delete()
        {
            // Arrange
            ValuesController controller = new ValuesController();

            // Act
            controller.Delete(5);

            // Assert
        }
    }

}

  
using System.Collections.Generic;
using System.Web.Http;

namespace MvcApplication1.Controllers
{
    public class ValuesController : ApiController
    {
        // GET api/values
        public IEnumerable Get()
        {
            return new string[] { "value1", "value2" };
        }

        // PUT api/values/5
        public void Put(int id, [FromBody]string value)
        {
        }

        // DELETE api/values/5
        public void Delete(int id)
        {
        }
        // GET api/values/5
        public string Get(int id)
        {
            return "value";
        }

        // POST api/values
        [HttpPost]
        public string Post(string value, [FromBody]Person p)
        {
            return value+p.Name+":"+p.Age;
        }

    }
    public class Person
    {
        public string Name { get; set; }
        public int Age { get; set; }

        public override string ToString()
        {
            return this.Name + ": " + this.Age;
        }
    }
}

Basically, the purpose of Agile and Agile testing is to ensure that sufficient agility is always infused into the developmenr process not just through maintaining high confidence levels but also by eliminating sycophantic situations of "you praise me and I will praise you" attitude with testing techniques like using TestDoubles when a dependency is under development or not yet implemented.

And even if implemented, a unit test is not meant to test whether the Person exists or not but whether the code that expects the Person and has to interact with it in some way, either by calling an action on the Person object or by modifying some data of the Person, is behaving as expected of it.

And on the point of dependency, it is also important to note that mock testing using the Dependency Injection way is another example of wiring more dependency into the test itself and hence, a mock test, too, should not be concerned with whether the server is running or whether the database instance is up and running. The mock test should simply be able to mock the object! And this capability should be or rather, can be provided only by the mock framework ie., not as in the moq framework but in a way that the runtime calls are intercepted to fake or mock an object under test.

Happy unit testing, fake-ing and test double-ing !

Monday, 9 April 2018

Explicit interface method - C#

Note: Putting the angular brackets < and > in a blogger post is more difficult than generics !

Continuing with generics, one of  my favorite language features, but this time in C#, the more dynamic of generic implementation in all programming languages, the premise, again from an example from Stackoverflow, is that there are two interfaces, IEquipment and 
IEquipmentDataProvider, with the latter providing for a generic method, GetEquipment, that returns a type of IEquipment.   

The question being on Stackoverflow ie., whether 
IEquipment
GetEquipment<E>(string Path) where E : IEquipment, new();

is correct or should there be an alternate way of working on the intent? 

An intent is what an interface is about and so when a constraint is declared on a generic method, or a normal method, the expansion of the constraint at implementation is what reveals the design of the intent. In this instance, it is a constraint that says all implementing classes must be of type 
IEquipment (
where E : IEquipment) and should have a parameterless constructor - , new().

So, what does it mean as a design when the interface IEquipmentDataProvider declares it like so,

public interface IEquipmentDataProvider
{
  IEquipment GetEquipment<E>(string Path) where E : IEquipment, new(); 
} 


public interface IEquipment{

}
public interface IEquipmentDataProvider:IEquipment
{
  IEquipment GetEquipment<E>(string Path) where E : IEquipment, new();
}
public class Equipment:IEquipment{
public Equipment(){

}
public IEquipment GetEquipment<E>(string Path){
Equipment eqp=new Equipment();
IEquipment ieq=(IEquipment) eqp;
return ieq;
}

public class EquipmentDataProvider:IEquipmentDataProvider{
public EquipmentDataProvider(){

}
public IEquipment GetEquipment<E>(string Path){
EquipmentDataProvider eqp=new EquipmentDataProvider();
IEquipmentDataProvider iedp = (IEquipmentDataProvider) eqp;
return iedp;
}
public static void Main(){
IEquipmentDataProvider da=(IEquipmentDataProvider)new EquipmentDataProvider();
IEquipment eq = (IEquipment)da.GetEquipment<Equipment>("somepath");
System.Console.WriteLine(eq);
}
}

For the above code, the compiler rejects the interface implementation because E cannot be expanded into a type conforming to the constraints because a type of IEquipment does not exist with a parameterless constructor and a corresponding GetEquipment method. ie., had the IEquipment interface declared the GetEquipment method in it instead of the IEquipmentDataProvider, the error would have been for IEquipment because the implementing class, Equipment, too, has not implemented the method as an interface method!!


It can be quite vexing if one does not know C# well, which has a feature where a method can be explicitly defined so that the interface implementation conforms to what the compiler expects.

This means that you simply qualify the method with the interface name prefixed, like so:

public IEquipment IEquipmentDataProvider.GetEquipment(string Path){

}

But since it is an explicit method definition, the compiler throws an error that the public modifier cannot be applied on it!


Because it is typed specifically as an interface method! Cool, isn't it!?

Modify the signature of the method and the complete code is as below:

public interface IEquipment{

}

public interface IEquipmentDataProvider:IEquipment
{
  IEquipment GetEquipment<E>(string Path) where E : IEquipment, new();
}
public class Equipment:IEquipment{
public Equipment(){}
public IEquipment GetEquipment<E>(string Path){
Equipment eqp=new Equipment();
IEquipment ieq=(IEquipment) eqp;
return ieq;

}
public class EquipmentDataProvider:IEquipmentDataProvider{
public EquipmentDataProvider(){}
IEquipment IEquipmentDataProvider.GetEquipment<E>(string Path){
EquipmentDataProvider eqp=new EquipmentDataProvider();
IEquipmentDataProvider iedp = (IEquipmentDataProvider) eqp;
return iedp;
}
public static void Main(){
IEquipmentDataProvider da=(IEquipmentDataProvider)new EquipmentDataProvider();
IEquipment eq = (IEquipment)da.GetEquipment<Equipment>("somepath");
System.Console.WriteLine(eq);
}
}

and, the output, even though the method returns an IEquipment type is actually an EquipmentDataProvider type!!



Happy C#-ing and generic interfacing, whatever may be the constraints!

Thursday, 5 April 2018

Generic type constraints in Typescript

Platform: nodejs
npm install typescript, ts-node, mocha, babel

Generics from the C# days of 2005 onwards is a much-underused technique to implement type safety and security.

Here is a look at the fascinating feature using a mocha test and a couple of es6 classes and interface. Needless to say, this post, too, is inspired by a question from SO.

First, the premise.

An interface - interface DiscreteLinearOrder - with a generic type constraint - - declares two methods - next and lessThanOne - which are implemented in all deriving classes.

Another class that implements this interface imposes its own constraint in this form -

class DLOinterval<V, U extends DiscreteLinearOrder<any>>
implements DiscreteLinearOrder -

for the simple requirement that any consuming object is not typed as

const aaa = new abc.DLOinterval<number, string
>

or any other type but DiscreteLinearOrder interface type.

Like so,

const aaa = new abc.DLOinterval<number, abc.DLOnumber>

where abc.DLOnumber is another class implementing the DiscreteLinearOrder interface.




The interesting aspect that I originally chose this scenario was to explore the type inference happening at compile time in generics ie.,



The red squiggly line, in the above screenshot, indicates an error that since T is already the first parameter, typing another parameter with the same constraint causes the compiler to build an inference tree from the same parameter list, which had it not been a generic type would have simply been explained as a variable name already used but since T is not a variable but a type, it demonstrates that its duplicate usage causes a constraint to become almost like an infinite constraint as they both refer to each other!

Below is the code to be compiled with 

  1. tsc   
  2. mocha --compilers <path to ts-node\register> testfilename.ts
// testname.ts
import {expect} from 'chai'
import * as abc from './discretelo'
import 'mocha'
describe('a test', () => { 
it('interface', function(){
const aaa = new abc.DLOinterval<number, abc.DLOnumber>
(new abc.DLOnumber(3),new abc.DLOnumber(5),null,2)
    expect(aaa.next()).to.equal(3)
})
});
// discretelo.ts

interface DiscreteLinearOrder<T> {
    next:()=>T;
    lessThan(y:T):Boolean;
}
export class DLOnumber implements DiscreteLinearOrder<number> {
    private value: number;
    constructor(x: number) { this.value = x; }
    next = () => { return(this.value + 1); };
    lessThan = (y: number) => { return(this.value < y); };
    getValue = () => { return(this.value.toString()); }
}
export class DLOinterval<V, U extends DiscreteLinearOrder<any>>
implements DiscreteLinearOrder<number>{
    private start: U;
    private end: U;
    private data: any;
    private value: number;
    constructor(s: U, e: U, d: any,v:number) {
        this.value=v
        this.start = s;
        this.end   = e;
        this.data  = d;
    }
        next = () => { return(this.value + 2); };
        lessThan = (y: number) => { return(this.value < y); };
}



Make the test pass by changing the expected value!

Happy generic testing typsecript!